Diary of Unknown Symptoms

Mystery of the Internal Vibration

Entry for March 14, 2007

In my googling I come across this article that talks about the absorption of minerals and the benefit of using colloidal minerals.

Mineral Absorption and Deficiency
By Yvette R. Schlussel, Ph.D.


A wide range of minerals is essential for human health. The recommended dietary allowances (RDAs) serve as guidelines for daily intakes of nutrients that population groups in the United States should have in their diets. Dietary Reference Intakes (DRIs) have been established for the following essential minerals: calcium, phosphorus, and magnesium. In addition, DRIs have been set for other trace elements, which have been identified to have important-if not essential roles in maintaining health. These include: iron, zinc, copper, manganese, selenium, boron, chromium, cobalt, molybdenum, vanadium, nickel, lithium, iodine and fluoride.

There is evidence that the need for mineral intake is not being met, especially in certain subpopulations. It is difficult for most individuals to ingest enough calcium from foods available in a cereal-based economy without liberal consumption of dairy products, for example. Supplementation with minerals is recommended to complement dietary intake and avoid deficiencies.

Mineral supplements are associated with different absorptive capacities. The absorption of minerals depends on a number of physiological, biochemical, and hormonal characteristics of the consumer and the form of the mineral consumed. Potential mineral sources are not all alike and should be evaluated for bioavailability.

Factors that enhance mineral absorption include the form of the mineral ingested, maintenance of chemical stability, presence of a specific transporter, small particle size, solubility, ascorbic acid, and low intestinal motility. Factors that inhibit absorption include oxalic acid, phytic acid, fiber, sodium, tannins, caffeine, protein, fat, antacids, rapid transit time, malabsorption syndromes, precipitation by alkalinization, other minerals, hormones and nutritional status.

Colloidal minerals exhibit properties that enhance absorption. Principles of biochemistry support the view that colloidal minerals may be more bioavailable than minerals in solid supplement or food forms. A number of diseases are associated with mineral deficiencies or impaired metabolism of minerals. Supplementation with minerals has improved the nutritional status and lowered disease risk and progression factors among patients with arthritis, diabetes, cancer, anorexia, and hypertension.


There is no doubt that nutrient deficiencies and excesses can influence disease states. Despite advances in the development of therapeutic agents, nutritional balance is crucial for prevention and resolution of disease. To expect the human body to function properly in the face of nutrient deficiency neglects current knowledge of the physiological needs of metabolically active tissues. While there are extensive studies on how nutrient deficiencies and supplementation affect diseases, there are considerably fewer direct studies available on the mechanisms of action of nutrient supplementation. This report applies generally accepted principles of chemistry and biological systems to mineral supplementation and their absorbability. This report addresses factors affecting the differences in the body’s absorption of minerals with particular attention to colloidal minerals and the role of mineral deficiencies in disease. Specific issues addressed include:

• Mineral Requirements
• Mineral Absorption and Bioavailability
• Mechanisms of absorption
• Essential Minerals and their specific absorption
• Physiologic factors affecting absorption
• Food and Non-Food Sources and Absorption
• Diseases Associated with Mineral Deficiencies
• Cancer
• Arthritis
• Diabetes
• Anorexia
• Hypertension

Mineral Requirements

Throughout the life span, the human body requires new supplies of nutrients and adequate and appropriate reserves of nutrients for proper metabolic and structural function. There is evidence that nutritional need for mineral intakes are not being met, especially in certain age-sex groups and populations. Supplementation with minerals is recommended to prevent deficiencies. Vitamins and minerals are generally dispensed in solid (tablet or capsule form). However some mineral supplementation is available in colloidal form. Mineral absorption is complicated and dependent upon a number of factors related to mineral solubility and absorbability.



Absorption is the rate at which and the process by which molecules and atoms from the environment enter the interior of the organism via passage across (or around) the lining cells of the gastro-intestinal tract. Absorption can occur all the way from the stomach to the rectum, although the small intestine is the organ most importantly involved in absorption.

Absorptive efficiency for many nutrients, notably iron, calcium and zinc, is governed by homeostatic feedback regulation. When the body stores are too low, the intestine up-regulates the avidity with which the intestine takes up the nutrient. When the body reserves are adequate or increased, the gut down-regulates the nutrient’s uptake. At a molecular level, this regulation can be expressed by the control of intraluminal binding ligands, cell surface receptors, intracellular carrier proteins, intracellular storage proteins, or the energetics of the transmembrane transport.


Bioavailability refers to the extent to which a nutrient reaches its site of pharmacologic action. For practical purposes, this definition includes the extent to which the nutrient reaches a fluid (e.g. blood) that bathes the site of action and via which the nutrient can readily reach the site of action. The bioavailability of a mineral depends directly on the extent to which the mineral is absorbed and distributed to the site of action and depends inversely on the extent to which it is metabolized and excreted prior to arriving at the site of action. It is necessary to consider the factors that affect absorption in order to determine the relative bioavailability of nutrients in different forms.

Factors Affecting Absorption

Current knowledge on intestinal absorption of nutrients includes multiple factors that can affect absorption. Physiochemical processes that influence both the extent and the rate at which minerals cross the mucosal barrier and enter the bloodstream influence absorption.

Mechanisms of Absorption

The vast bulk of mineral absorption occurs in the small intestine. The best-studied mechanisms of absorption are clearly for calcium and iron, deficiencies of which are significant health problems throughout the world. Intestinal absorption is a key regulatory step in mineral homeostasis. Mineral homeostasis is the body’s physiologic efficiency in absorbing the level of minerals the body requires from those minerals that are available to it.


Colloidal Minerals

Liquid preparations of minerals are known as “colloidal minerals.” A “colloid” is a substance dispersed in particle size large enough to prevent or delay passage through a semipermeable membrane, but small enough to remain in suspension in a liquid or gas. Colloids consist of very tiny particles that are usually between 1 nanometer and 1000 nanometers in diameter and that are suspended in a continuous medium, such as a liquid, a solid, or a gaseous substance.

The surface area
of colloidal particles is very large. Particles may be electrically charged and have stabilizing agents added to prevent precipitation. Most are negatively charged but this varies between different colloid types. The charges are particularly important for attracting water molecules and cations. The enormous surface area and charged sites on colloids attract and bind many biologically active substances. Another advantage of minerals in colloidal form is that the bound substances are able to withstand enzymatic attack.

The ionic form of minerals is important for mineral absorbability. Colloidal minerals from humic shale extracts predominantly contain sulfates of iron and aluminum and traces of metal hydroxides. Many of the minerals in humic shale extracts are present in ionic forms. This may make it easier for them to cross cellular membranes. Mineral bioavailability is facilitated by the way in which metals cross the intestinal mucosa. A variety of conditions may affect metal transport across the intestinal mucosa. These factors can act at the brush border membrane, within the cytosol, and at the basolateral membrane. Metal ions, probably bound to intracellular ligands, cross the cytosol and are extruded across the basolateral membrane into the portal circulation. Once a metal ion enters the enterocyte, it may be used by the cell for its own metabolic needs or released in the circulation for the metabolic needs of other tissues. Because colloidal minerals do not have to undergo disintegration and dissolution, in contrast with minerals taken in the form of tablets and capsules, under applicable principles of biochemistry they are said to have enhanced-absorption capability, i.e. absorbability.

This absorbability is evident in solubility. For example, small-molecular weight ligands, such as amino acids and other organic acids, can increase solubility and facilitate absorption; In liquid supplements, minerals are already dissolved and therefore are immediately bioavailable. Furthermore, the liquid supplements usually are acidic; specifically, they are formulated to contain citric acid, ascorbic acid, and other substances that increase the bioavailability of minerals, such as carbohydrates (glucose, lactose), polyols (sorbitol), amino acids (arginine, lysine), vegetable gums, peptides, and emulsifying agents. Solid vitamin-mineral preparations instead contain inert excipients and are usually buffered so as not to cause gastric discomfort on ingestion, although this may reduce mineral bioavailability.

The bioavailability of a mineral in the body is governed by multiple factors, including body stores, hormonal regulation, the chemical form of the nutrient, and concomitant nutrient intake. There are few controlled clinical studies that examine the composition, efficacy, absorbability, or other properties of mineral supplements. There are, however, biochemical reviews of the properties of colloidal minerals that conclude that they are more bioavailable than minerals in other forms. That conclusion is consistent with the applicable principles of biochemistry discussed above.

Commercial supplements of minerals are available in a wide variety of forms. The time required for absorption affects their absorbability. These include isolated compounds such as inorganic salts, organic salts, amino acid chelates and a yeast form. Bioavailability of trace elements has been studied in long-term animal supplementation (3-4 weeks) studies by measuring the trace element in liver, blood, serum or plasma and comparing the slope of the dose-concentration plots. A preliminary depletion is usually performed using trace element deficient food. In short-term experiments, the area under the blood, serum or plasma concentration-time curve is used to compare bioavailabilities after a single dose of the test substance is given. In laboratory studies, examination of the blood concentration-time curves for short-term human experiments involving selenium, zinc and copper revealed that the yeast form was more slowly absorbed, i.e., took longer to reach its maximum concentration, and was thus more bioavailable.


While the ultimate absorption of minerals by the human body is dependent upon numerous factors including homeostasis, body stores, and hormonal regulation, the absorbability of minerals (their availability for absorption) is also affected by the form in which the minerals are ingested. Minerals in solid forms such as in solid dosage supplements and in foods must be dissolved and disintegrated prior to being available for absorption. Principles of biochemistry show that minerals in a liquid medium, or in soluble acids, i.e. colloidal minerals, can be expected to be more absorbable due to their smaller size, larger surface area and relative charge. The solubility of a mineral has been shown to enhance its bioavailability. Thus, there is scientific evidence that colloidal minerals may be more efficient, a preferred vehicle for absorption, than minerals in solid forms.

Colloidal minerals exhibit properties that enhance absorption. Principles of biochemistry support the view that colloidal minerals may be more bioavailable than minerals in solid supplement or food forms.

Yvette Schlussel, Ph.D.
Research Scientist
Dept. of Nutritional Sciences
Rutgers University
New Brunswick, NJ


March 14, 2007 - Posted by | Health | ,

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: