Diary of Unknown Symptoms

Mystery of the Internal Vibration

Entry for January 14, 2007

Potassium is found mostly in leafy green vegetables which I don’t eat, destroyed by sugar which I used to have a lot of and has a very important relationship with magnesium. Why didn’t I look at this before? Actually, I did try taking potassium for a while at about 300 mg a day but I didn’t notice any difference so I’ll start taking it at a higher dose. Today I’ll add three doses of 200 mg.

Potassium is a very significant body mineral, important to both cellular and electrical function. It is one of the main blood minerals called “electrolytes” (the others are sodium and chloride), which means it carries a tiny electrical charge (potential). Potassium is the primary positive ion (cation) found within the cells, where 98 percent of the 120 grams of potassium in the body is found. The blood serum contains about 4-5 mg. (per 100 ml.) of the total potassium; the red blood cells contain 420 mg., which is why a red-blood-cell level is a better indication of an individual’s potassium status than the commonly used serum level.

Magnesium helps maintain the potassium in the cells, but the sodium and potassium balance is as finely tuned as those of calcium and phosphorus or calcium and magnesium. Research has found that a high-sodium diet with low potassium intake influences vascular volume and tends to elevate the blood pressure. Then doctors may prescribe diuretics that can cause even more potassium loss, aggravating the underlying problems. The appropriate course is to shift to natural, potassium foods and away from high-salt foods, lose weight if needed, and follow an exercise program to improve cardiovascular tone and physical stamina. The natural diet high in fruits, vegetables, and whole grains is rich in potassium and low in sodium, helping to maintain normal blood pressure and sometimes lowering elevated blood pressure. The body contains more potassium than sodium, about nine ounces to four, but the American diet, with its reliance on fast foods, packaged convenience foods, chips, and salt has become high in sodium (salt). Because the body’s biochemical functions are based on the components found in a natural diet, special mechanisms conserve sodium, while potassium is conserved somewhat less.

Potassium is well absorbed from the small intestine, with about 90 percent absorption, but is one of the most soluble minerals, so it is easily lost in cooking and processing foods. Most excess potassium is eliminated in the urine; some is eliminated in the sweat. When we perspire a great deal, we should replace our fluids with orange juice or vegetable juice containing potassium rather than just taking salt tablets.The kidneys are the chief regulators of our body potassium, keeping the blood levels steady even with wide variation in intake. The adrenal hormone aldosterone stimulates elimination of potassium by the kidneys. Alcohol, coffee (and caffeine drinks), sugar, and diuretic drugs, however, cause potassium losses and can contribute to lowering the blood potassium. This mineral is also lost with vomiting and diarrhea.

Sources: Potassium is found in a wide range of foods. Many fruits and vegetables are high in potassium and low in sodium and, as discussed, help prevent hypertension. Most of the potassium is lost when processing or canning foods, while less is lost from frozen fruits or vegetables.

Leafy green vegetables such as spinach, parsley, and lettuce, as well as broccoli, peas, lima beans, tomatoes, and potatoes, especially the skins, all have significant levels of potassium. Fruits that contain this mineral include oranges and other citrus fruits, bananas, apples, avocados, raisins, and apricots, particularly dried. Whole grains, wheat germ, seeds, and nuts are high-potassium foods. Fish such as flounder, salmon, sardines, and cod are rich in potassium, and many meat foods contain even more potassium than sodium, although they often have additional sodium added as salt.

Functions: Potassium is very important in the human body. Along with sodium, it regulates the water balance and the acid-base balance in the blood and tissues. Potassium enters the cell more readily than does sodium and instigates the brief sodium-potassium exchange across the cell membranes. In the nerve cells, this sodium-potassium flux generates the electrical potential that aids the conduction of nerve impulses. When potassium leaves the cell, it changes the membrane potential and allows the nerve impulse to progress. This electrical potential gradient, created by the “sodium-potassium pump,” helps generate muscle contractions and regulates the heartbeat.

Potassium is very important in cellular biochemical reactions and energy metabolism; it participates in the synthesis of protein from amino acids in the cell. Potassium also functions in carbohydrate metabolism; it is active in glycogen and glucose metabolism, converting glucose to glycogen that can be stored in the liver for future energy. Potassium is important for normal growth and for building muscle.

Requirements: There is no specific RDA for potassium, though it is thought that at least 2-2.5 grams per day are needed, or about 0.8-1.5 grams per 1,000 calories consumed. The average American diet includes from 2-6 grams per day.

In cooking or canning foods, potassium is depleted but sodium is increased, as it is in most American processed foods as well. It is suggested that we include more potassium than sodium in our diets; a ratio of about 2:1 would be ideal. When we increase sodium intake, we should also consume more potassium-rich foods or take a potassium supplement. People who consume excess sodium can lose extra urinary potassium, and people who eat lots of sugar also may become low in potassium.

Over-the-counter potassium supplements usually contain 99 mg. per tablet. Prescription potassium is usually measured in milliequivalents (meq.); 1 meq. equals about 64 mg. About 10-20 meq. (640-1280 mg.) per day may be recommended as a supplement to the individual’s diet.


January 15, 2007 - Posted by | Health | ,

No comments yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: